Abnormalities in focal adhesion complex formation, regulation, and function in human autosomal recessive polycystic kidney disease epithelial cells

Author:

Israeli Sharon1,Amsler Kurt1,Zheleznova Nadezhda2,Wilson Patricia D.12

Affiliation:

1. Department of Medicine, Division of Nephrology, Mount Sinai School of Medicine, New York, New York; and

2. Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin

Abstract

Integrin-associated focal adhesion complex formation and turnover plays an essential role in directing interactions between epithelial cells and the extracellular matrix during organogenesis, leading to appropriate cell spreading, cell-matrix adhesion, and migration. Autosomal recessive polycystic kidney disease (ARPKD) is associated with loss of function of PKHD1-encoded protein fibrocystin-1 and is characterized by cystic dilation of renal collecting tubules (CT) in utero and loss of renal function in patients if they survive the perinatal period. Normal polycystin-1 (PC-1)/focal adhesion complex function is required for control of CT diameter during renal development, and abnormalities in these complexes have been demonstrated in human PC-1 mutant cystic cells. To determine whether loss of fibrocystin-1 was associated with focal adhesion abnormalities, ARPKD cells or normal age-matched human fetal (HF)CT cells in which fibrocystin-1 had been decreased by 85% by small interfering RNA inhibition were compared with normal HFCT. Accelerated attachment and spreading on collagen matrix and decreased motility of fibrocystin-1-deficient cells were associated with longer paxillin-containing focal adhesions, more complex actin-cytoskeletal rearrangements, and increased levels of total β1-integrin, c-Src, and paxillin. Immunoblot analysis of adhesive cells using site-specific phospho-antibodies demonstrated ARPKD-associated loss of activation of focal adhesion kinase (FAK) by phosphorylation at its autophosphorylation site (Y397); accelerated FAK inhibition by phosphorylation at Y407, S843, and S910; as well as increased activation of c-Src at pY418. Paxillin coimmunoprecipitation analyses suggested that fibrocystin-1 was a component of the normal focal adhesion complex and that actin and fibrocystin-1 were lost from ARPKD complexes.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3