HO-2 provides endogenous protection against oxidative stress and apoptosis caused by TNF-α in cerebral vascular endothelial cells

Author:

Basuroy Shyamali,Bhattacharya Sujoy,Tcheranova Dilyara,Qu Yan,Regan Raymond F.,Leffler Charles W.,Parfenova Helena

Abstract

Tumor necrosis factor-α (TNF-α) causes oxidative stress and apoptosis in a variety of cell types. Heme oxygenase (HO) degrades heme to bilirubin, an antioxidant, and carbon monoxide (CO), a cell cycle modulator, and a vasodilator. Newborn pig cerebral microvascular endothelial cells (CMVEC) highly express constitutive HO-2. We investigated the role of HO-2 in protection against TNF-α-induced apoptosis in cerebral vascular endothelium. In CMVEC from mice and newborn pigs, 15 ng/ml TNF-α alone, or with 10 μg/ml cycloheximide (CHX) caused apoptosis detected by nuclear translocation of p65 NF-κB, caspase-3 activation, DNA fragmentation, cell-cell contact destabilization, and cell detachment. TNF-α did not induce HO-1 expression in CMVEC. CMVEC from HO-2 knockout mice showed greater sensitivity to apoptosis caused by serum deprivation and TNF-α than did wild-type mice. TNF-α increased reactive oxygen species generation, including hydrogen peroxide and superoxide radicals, as detected by dihydrorhodamine-123 and dihydroethidium. The TNF-α response was inhibited by superoxide dismutase and catalase suggesting apoptosis is oxidative stress related. Inhibition of endogenous HO-2 in newborn pig CMVEC increased oxidative stress and exaggerated apoptosis caused by serum deprivation and TNF-α. In HO-1-overexpressing CMVEC (HO-1 selective induction by cobalt portophyrin), TNF-α did not cause apoptosis. A CO-releasing compound, CORM-A1, and bilirubin blocked TNF-α-induced reactive oxygen species accumulation and apoptosis consistent with the antioxidant and antiapoptotic roles of the end products of HO activity. We conclude that HO-2 is critical for protection of cerebrovascular endothelium against apoptotic changes induced by oxidative stress and cytokine-mediated inflammation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3