Identification of the intermediate filament protein synemin/SYNM as a target of myocardin family coactivators

Author:

Swärd Karl1ORCID,Krawczyk Katarzyna K.1,Morén Björn1,Zhu Baoyi12,Matic Ljubica3,Holmberg Johan1,Hedin Ulf3,Uvelius Bengt4,Stenkula Karin1,Rippe Catarina1

Affiliation:

1. Department of Experimental Medical Science, Lund, Sweden

2. Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), Guangdong, China

3. Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

4. Department of Clinical Science, Lund, Lund University, Lund, Sweden

Abstract

Myocardin (MYOCD) is a critical regulator of smooth muscle cell (SMC) differentiation, but its transcriptional targets remain to be exhaustively characterized, especially at the protein level. Here we leveraged human RNA and protein expression data to identify novel potential MYOCD targets. Using correlation analyses we found several targets that we could confirm at the protein level, including SORBS1, SLMAP, SYNM, and MCAM. We focused on SYNM, which encodes the intermediate filament protein synemin. SYNM rivalled smooth muscle myosin ( MYH11) for SMC specificity and was controlled at the mRNA and protein levels by all myocardin-related transcription factors (MRTFs: MYOCD, MRTF-A/MKL1, and MRTF-B/MKL2). MRTF activity is regulated by the ratio of filamentous to globular actin, and SYNM was accordingly reduced by interventions that depolymerize actin, such as latrunculin treatment and overexpression of constitutively active cofilin. Many MRTF target genes depend on serum response factor (SRF), but SYNM lacked SRF-binding motifs in its proximal promoter, which was not directly regulated by MYOCD. Furthermore, SYNM resisted SRF silencing, yet the time course of induction closely paralleled that of the SRF-dependent target gene ACTA2. SYNM was repressed by the ternary complex factor (TCF) FLI1 and was increased in mouse embryonic fibroblasts lacking three classical TCFs (ELK1, ELK3, and ELK4). Imaging showed colocalization of SYNM with the intermediate filament proteins desmin and vimentin, and MRTF-A/MKL1 increased SYNM-containing intermediate filaments in SMCs. These studies identify SYNM as a novel SRF-independent target of myocardin that is abundantly expressed in all SMCs.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3