Affiliation:
1. INSERM U1053, Bordeaux, France; and
2. Université Bordeaux-Segalen, Bordeaux, France
Abstract
The endoplasmic reticulum (ER)-induced unfolded protein response (ERUPR) is an adaptive mechanism that is activated upon accumulation of misfolded proteins in the ER and aims at restoring ER homeostasis. The ERUPR is transduced by three major ER-resident stress sensors, namely PKR-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol requiring enzyme 1 (IRE1). Activation of these ER stress sensors leads to transcriptional reprogramming of the cells. Recently, microRNAs (miRNAs), small noncoding RNAs that generally repress gene expression, have emerged as key regulators of ER homeostasis and important players in ERUPR-dependent signaling. Moreover, the miRNAs biogenesis machinery appears to also be regulated upon ER stress. Herein we extensively review the relationships existing between “canonical” ERUPR signaling, control of ER homeostasis, and miRNAs. We reveal an intricate signaling network that might confer specificity and selectivity to the ERUPR in tissue- or stress-dependent fashion. We discuss these issues in the context of the physiological and pathophysiological roles of ERUPR signaling.
Publisher
American Physiological Society
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献