Hypersensitivity of mtDNA-depleted cells to staurosporine-induced apoptosis: roles of Bcl-2 downregulation and cathepsin B

Author:

Rommelaere Guillaume1,Michel Sébastien1,Mercy Ludovic1,Fattaccioli Antoine1,Demazy Catherine1,Ninane Noelle1,Houbion Andrée1,Renard Patricia1,Arnould Thierry1

Affiliation:

1. Laboratory of Biochemistry and Cell Biology (URBC), Faculty of Sciences, NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (FUNDP), Namur, Belgium

Abstract

We show that mitochondrial DNA (mtDNA)-depleted 143B cells are hypersensitive to staurosporine-induced cell death as evidenced by a more pronounced DNA fragmentation, a stronger activation of caspase-3, an enhanced poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and a more dramatic cytosolic release of cytochrome c. We also show that B-cell CLL/lymphoma-2 (Bcl-2), B-cell lymphoma extra large (Bcl-XL), and myeloid cell leukemia-1 (Mcl-1) are constitutively less abundant in mtDNA-depleted cells, that the inhibition of Bcl-2 and Bcl-XL can sensitize the parental cell line to staurosporine-induced apoptosis, and that overexpression of Bcl-2 or Bcl-XL can prevent the activation of caspase-3 in ρ0143B cells treated with staurosporine. Moreover, the inactivation of cathepsin B with CA074-Me significantly reduced cytochrome c release, caspase-3 activation, PARP-1 cleavage, and DNA fragmentation in mtDNA-depleted cells, whereas the pan-caspase inhibitor failed to completely prevent PARP-1 cleavage and DNA fragmentation in these cells, suggesting that caspase-independent mechanisms are responsible for cell death even if caspases are activated. Finally, we show that cathepsin B is released in the cytosol of ρ0 cells in response to staurosporine, suggesting that the absence of mitochondrial activity leads to a facilitated permeabilization of lysosomal membranes in response to staurosporine.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3