Calcium-dependent inactivation of inwardly rectifying K+ channel in a tumor mast cell line

Author:

Mukai M.1,Kyogoku I.1,Kuno M.1

Affiliation:

1. Department of Physiology, Osaka City University Medical School, Japan.

Abstract

Antigenic stimulation of rat basophilic leukemia (RBL-2H3) cells, a tumor mast cell line, is associated with an increase in intracellular free Ca2+ concentrations ([Ca2+]i) and membrane polarization. We recorded whole cell and single-channel currents through the inwardly rectifying K+ channel, a major resting conductance of cells, using the patch-clamp technique, and we examined interactions between channel activity and [Ca2+]i. With 10 microM Ca2+ in the pipette, the amplitude of whole cell currents gradually declined within 5 min to 48 +/- 13% of that immediately after rupture of the patch membrane, in the presence of 1 mM ATP which minimized intrinsic rundown. In inside-out patches, activity of the channel was reduced by increasing the concentration of Ca2+ in the internal medium, both in the presence and absence of 1 mM ATP, with no apparent change in single-channel conductance. Time-averaged mean current activity in inside-out patches in the presence of 5 microM Ca2+ was less than 50% of that with Ca2+ of 100 nM or less. These results suggest that a rise in [Ca2+]i leads to a closure of the inwardly rectifying K+ channel. In some inside-out patches, inward currents characterized by burst composed of rapid transitions between open and closed states were observed (flickering currents). Single-channel properties of the flickering currents are similar to the inwardly rectifying K+ channel except for kinetics (single-channel conductance of 24.5 +/- 7.9 pS, inward rectification, and permeability to K+).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3