Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells

Author:

Davis M. J.1,Donovitz J. A.1,Hood J. D.1

Affiliation:

1. Department of Medical Physiology, College of Medicine, Texas A&MUniversity, College Station 77843.

Abstract

Mechanosensitive ion channels may play a key role in transducing vascular smooth muscle (VSM) stretch into active force development. To test this hypothesis, we recorded single-channel and macroscopic currents during mechanical stimulation of enzymatically dispersed vascular smooth muscle cells. Patch pipette suction activated a nonselective cation channel that was permeable to K+, Na+, and Ca2+. Whole cell stretch was accomplished using two patch-type micropipettes attached to the cell ends with suction. Stretch elicited a sustained depolarization with a magnitude similar to that observed in pressurized arteries. Under whole cell voltage clamp, stretch activated an inward current with a reversal potential near -15 mV. In another series of experiments, whole cell stretch failed to modify the current-voltage relationship for voltage-gated calcium currents. Thus, in VSM, both single-channel and whole cell data are consistent with activation of a nonselective cation channel by stretch. This mechanism may, in part, account for pressure-induced activation of intact blood vessels.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 293 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets;Signal Transduction and Targeted Therapy;2023-07-31

2. Vascular mechanotransduction;Physiological Reviews;2023-04-01

3. The role of mechanosensitive Piezo1 channel in diseases;Progress in Biophysics and Molecular Biology;2022-08

4. A Role of Caveolae in Trabecular Meshwork Mechanosensing and Contractile Tone;Frontiers in Cell and Developmental Biology;2022-03-17

5. Mechanotransduction in gastrointestinal smooth muscle cells: role of mechanosensitive ion channels;American Journal of Physiology-Gastrointestinal and Liver Physiology;2021-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3