Na-K-Cl cotransport in the shark rectal gland. II. Regulation in isolated tubules

Author:

Lytle C.1,Forbush B.1

Affiliation:

1. Mount Desert Island Biological Laboratory, Salsbury Cove, Maine04672.

Abstract

We examined the binding of [3H]benzmetanide, a potent inhibitor of Na-K-Cl cotransport, to secretory tubules isolated from dogfish shark rectal glands. Specific binding increased dramatically (from 3 to 40 pmol/mg protein) when the tubules were exposed to secretory stimuli [e.g., vasoactive intestinal peptide, adenosine, forskolin, and permeable adenosine 3',5'-cyclic monophosphate (cAMP) analogues]. Binding was also promoted by osmotically induced changes in cell volume; a 45% reduction in cell water content mimicked the effect of secretagogues on binding, whereas a 40% increase in cell water was only half as effective. Volume-responsive binding required extracellular sodium and chloride. The effect of cell shrinkage on binding was rapid and reversible (half-activation time = approximately 3 min, half-deactivation time = approximately 2 min). The binding sites evoked by secretagogues and by cell shrinkage had similar affinities for [3H]benzmetanide (Kd approximately 0.35 microM). Forskolin, a potent secretagogue, increased cell cAMP content 10-fold and respiration 7-fold, whereas hypertonicity affected neither parameter. The effects of cAMP-dependent stimuli and hypertonicity on binding were not additive. These results suggest the following. 1) Na-K-Cl cotransporters acquire the ability to bind [3H]benzmetanide with high affinity when activated. 2) Hormonal modulation of rectal gland secretion involves a coordinated regulation of basolateral Na-K-Cl cotransporters and apical Cl channels. 3) Separate signal transduction pathways, one sensitive to cAMP and another to cell volume, regulate the Na-K-Cl cotransporter.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3