Exercise inhibits glucocorticoid-induced glutamine synthetase expression in red skeletal muscles

Author:

Falduto M. T.1,Young A. P.1,Hickson R. C.1

Affiliation:

1. College of Kinesiology, University of Illinois, Chicago 60680.

Abstract

One purpose of this study was to determine whether the suppression of glucocorticoid-induced glutamine synthetase (GS) gene expression by exercise is localized to fiber types that are known to be primarily recruited during endurance running. A second purpose examined whether denervation, which is associated with a reduction in contractile activity, would upregulate GS expression. Exercise consisted of treadmill running at 31 m/min for 12-16 wk. Glucocorticoid treatment (100 mg/kg body wt hydrocortisone 21-acetate) was administered during the last 11 days of the exercise program. Basal GS expression was lowest (GS enzyme activity, 43 +/- 3 nmol.h-1.mg protein-1; GS mRNA, 1.0 arbitrary units) in the slow-twitch red soleus, a muscle type that is known to resist glucocorticoid-induced muscle wasting, intermediate (74 +/- 10 and 1.7 +/- 0.2) in fast-twitch red quadriceps, a muscle type susceptible to atrophy, and highest (106 +/- 16 and 5.4 +/- 1.3) in fast-twitch white quadriceps, a muscle type known to be most susceptible to atrophy. Hormone treatment increased GS enzyme activity and mRNA by two- to fourfold in all muscle types. Exercise diminished GS enzyme activity and mRNA in the fast-twitch red fibers to 35-70% of sedentary control values in both basal and glucocorticoid-stimulated muscles. The running also reduced GS enzyme activity in hormone-treated slow-twitch fibers but did not alter basal or glucocorticoid-induced GS expression in fast-twitch white fibers. These results indicate that glucocorticoids induce similar relative GS expression across all muscle types, but the low absolute levels of expression in slow-twitch muscles are not related to any atrophy.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3