Affiliation:
1. Department of Physiology and Biophysics, University of SouthernCalifornia School of Medicine, Los Angeles 90033.
Abstract
In this study, we measured the time courses of change in Na(+)-K(+)-ATPase alpha 1-, alpha 2-, and beta 1-subunit mRNA and protein abundance in cardiac myocytes isolated from euthyroid, hypothyroid, and hyperthyroid (hypothyroids injected daily with 1 microgram T3/g body wt) rats. In hypothyroids, alpha 1-, alpha 2-, and beta 1-protein levels were decreased to 0.55, 0.42, and 0.57 of euthyroids, predicting the decrease in Na(+)-K(+)-ATPase activity to 0.53 of control. There was no change in these subunits' mRNA levels, indicating that the decreases in protein levels were not due to decreased subunit transcription rates. In hyperthyroids, the alpha 1-mRNA increased to a steady state of threefold over hypothyroid by 1 day of T3 treatment, and the alpha 1-protein levels increased to twofold over hypothyroid by 4 days of T3. alpha 2-mRNA increased to 5-fold over hypothyroid by 2 days, whereas the alpha 2-protein levels increased to 14-fold above hypothyroid by 4 days of T3. Beta 1-mRNA increased to 12-fold above hypothyroid by 1 day of T3 treatment, whereas beta 1-protein increased to only 2.5-fold over hypothyroid by 4 days of T3. The discoordinate changes in alpha 2- and beta 1-mRNA vs. protein can be reconciled with the hypothesis that beta 1 is rate limiting for assembly in eu- and hypothyroids, and favors assembly with alpha 1, while excess unassembled alpha 2 is degraded. In the hyperthyroids we predict beta 1 is not rate limiting and there is increased alpha 2 beta 1-assembly. We calculate that T3 decreases the alpha 1-to-alpha 2 ratio from 24:1 in hypothyroid to 3.4:1 in hyperthyroid cardiomyocytes.
Publisher
American Physiological Society
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献