Spontaneous and propagated calcium release in isolated cardiac myocytes viewed by confocal microscopy

Author:

Williams D. A.1,Delbridge L. M.1,Cody S. H.1,Harris P. J.1,Morgan T. O.1

Affiliation:

1. Department of Physiology, University of Melbourne, Parkville,Victoria, Australia.

Abstract

Laser scanning confocal microscopy of the Ca(2+)-sensitive fluorophore fluo-3 has been used to investigate spontaneous and propagated calcium release at high temporal and spatial resolution in enzymatically dispersed rat cardiomyocytes. Waves of fluorescence which propagated throughout the cytosol were evident in spontaneously contracting cardiac cells containing fluo-3, but not in cells containing Ca(2+)-insensitive fluorophores [2',7'-bis (carboxyethyl)-5,6-carboxyfluorescein, SNARF-1, rhodamine-123, or tetramethylrhodamine-labeled dextran]. These waves represent localized areas of elevated [Ca2+] [975 +/- 13 (SE) nM, range 800-1,500 nM; n = 16 cells]. Ca2+ waves were initiated by the spontaneous release of Ca2+ from the sarcoplasmic reticulum (SR) and propagated through cells at rates of 50-150 microns/s. Ca2+ waves were usually initiated at the cell ends, but multiple and variable initiation foci were observed in some cells. Where waves intersected within a single cell there was extinction of wave propagation, confirming the SR as the direct source of Ca2+ and revealing a refractory period in SR Ca2+ release. In some cells high-frequency Ca2+ waves lead to synchronized elevation of [Ca2+] throughout the entire cytosol and within the time period associated with cell depolarization. These observations support the hypothesis that some cardiac arrhythmias are initiated by spontaneous and propagated Ca2+ release and involve subsequent depolarization, global elevation of intracellular [Ca2+], and cell contraction.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3