Na-K-Cl cotransport in the shark rectal gland. I. Regulation in the intact perfused gland

Author:

Forbush B.1,Haas M.1,Lytle C.1

Affiliation:

1. Mount Desert Island Biological Laboratory, Salsbury Cove, Maine04672.

Abstract

To investigate regulation of the Na-K-Cl cotransport system in the rectal gland of the dogfish shark Squalus acanthias, we examined binding of the loop diuretic [3H]benzmetanide to the intact gland. Glands were perfused with a shark Ringer solution, either in a basal state or stimulated with vasoactive intestinal peptide (VIP). [3H]benzmetanide was added to the perfusion solution for the last 25 min of perfusion, after which the gland was homogenized and the amount of bound [3H]benzmetanide was determined in the membrane fraction. Most of the membrane-associated [3H]-benzmetanide appeared to be associated with the Na-K-Cl cotransporter as judged by the dissociation rates at 0 degree C and 20 degrees C, by labeling with a photosensitive analogue, and by continued association of [3H]benzmetanide with membrane protein on solubilization. With the use of [3H]4-benzoyl-5-sulfamoyl-3-(3- thenyloxy)benzoic acid, a photosensitive analogue of benzmetanide, a 200-kDa protein was selectively labeled on exposure to ultraviolet light. It was also possible to detect [3H]-benzmetanide binding during the perfusion period as an arterial-venous difference, thereby providing a time course of the binding process. In comparing two groups of five glands each, VIP stimulated NaCl secretion 20-fold and [3H]benzmetanide binding 16-fold, providing strong evidence that the Na-K-Cl cotransport system is activated as part of the process of stimulation of secretion. The VIP-stimulated increase in [3H]benzmetanide binding was completely inhibited when Ba was added to the perfusate to block K channel-mediated K exit across the basolateral membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3