Regulated endocytosis in a chloride secretory epithelial cell line

Author:

Bradbury N. A.1,Jilling T.1,Kirk K. L.1,Bridges R. J.1

Affiliation:

1. Department of Physiology and Biophysics, University of Alabama,Birmingham 35294-0005.

Abstract

The colonic epithelial cell line T84 has been shown to be a good model to investigate the regulation of Cl- secretion by the adenosine 3',5'-cyclic monophosphate (cAMP)-mediated second messenger cascade. Regulated exocytic insertion and endocytic retrieval of transport proteins, or proteins that regulate transport proteins, is one mechanism proposed to regulate plasma membrane solute permeabilities. The aims of our studies were to characterize endocytic processes in T84 cells and to investigate their regulation by known activators of Cl- secretion that are mediated by the cAMP second messenger cascade. Forskolin, an activator of adenylate cyclase, caused a marked inhibition of endocytic uptake of the fluid-phase marker horseradish peroxidase (HRP) and the adsorptive marker wheat germ agglutinin conjugated to HRP. Similar inhibition was obtained with vasoactive intestinal peptide, a secretagogue whose receptor is coupled to adenylate cyclase, and 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, a membrane-permeable cAMP analogue. 1,9-Dideoxy-forskolin, a forskolin analogue that fails to activate adenylate cyclase, was without effect on endocytosis. Our data show that the net rate of endocytosis, as measured by fluid-phase uptake, is decreased by a cAMP-mediated mechanism. Because the number of Cl- channels or associated regulatory proteins in the plasma membrane reflects a balance between their exocytic insertion and endocytic retrieval, we propose that the cAMP-mediated decrease in endocytosis could contribute to the concomitant increase in plasma membrane Cl- permeability.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3