Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin

Author:

Homsher E.1,Wang F.1,Sellers J. R.1

Affiliation:

1. Section of Cellular and Molecular Motility, National Heart, Lung, andBlood Institute, National Institutes of Health, Bethesda, Maryland20892.

Abstract

The measurement of fluorescent-labeled actin filament movement driven by mechanoenzymes (e.g., myosin) is an important methodology for the study of molecular motors. It is assumed that the filament velocity (Vf) is analogous to the unloaded shortening velocity (Vu) seen in muscle fibers. Methods are described to reproducibly quantitate the movement of these filaments and to select uniformly moving filaments and specify their Vf. Use of these techniques allowed comparison of Vf to literature values for Vu with regard to [ATP], [ADP], [Pi], pH, ionic strength (10-150 mM), and temperature (15-30 degrees C). Vf and Vu are quantitatively similar with respect to the effects of substrate and product concentrations and temperatures greater than 20 degrees C. However, Vf is more sensitive to decreases in pH and temperatures less than 20 degrees C than Vu. At ionic strengths of 50-150 mM, Vf and Vu exhibit similar ionic strength dependencies (decreasing with ionic strength). At ionic strengths less than 50 mM, Vf is markedly reduced. Results of experiments using adenosine 5'-O-(3-thiotriphosphate) suggest that increasing the number of weakly bound cross bridges does not seriously affect Vf. Thus, although Vf is a good analogue for Vu under certain conditions (elevated ionic strength and temperatures greater than 20 degrees C), under others it is not. The results of motility assays must be cautiously interpreted.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3