Chloride secretion by semicircular canal duct epithelium is stimulated via β2-adrenergic receptors

Author:

Milhaud Pierre G.1,Pondugula Satyanarayana R.2,Lee Jun Ho2,Herzog Michael2,Lehouelleur Jacques1,Wangemann Philine2,Sans Alain1,Marcus Daniel C.2

Affiliation:

1. Institut National de la Santé et de la Recherche Médicale Unité 432 Vestibular Neurobiology, Université Montpellier II, 34095 Montpellier, France; and

2. Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506

Abstract

The ductal epithelium of the semicircular canal forms much of the boundary between the K+-rich luminal fluid and the Na+-rich abluminal fluid. We sought to determine whether the net ion flux producing the apical-to-basal short-circuit current ( I sc) in primary cultures was due to anion secretion and/or cation absorption and under control of receptor agonists. Net fluxes of 22Na, 86Rb, and36Cl demonstrated a basal-to-apical Clsecretion that was stimulated by isoproterenol. Isoproterenol and norepinephrine increased I sc with an EC50 of 3 and 15 nM, respectively, and isoproterenol increased tissue cAMP of native canals with an EC50 of 5 nM. Agonists for adenosine, histamine, and vasopressin receptors had no effect on I sc. Isoproterenol stimulation of I sc and cAMP was inhibited by ICI-118551 (IC50 = 6 μM for I sc) but not by CGP-20712A (1 μM) in primary cultures, and similar results were found in native epithelium. I sc was partially inhibited by basolateral Ba2+ (IC50 = 0.27 mM) and ouabain, whereas responses to genistein, glibenclamide, and DIDS did not fully fit the profile for CFTR. Our findings show that the canal epithelium contributes to endolymph homeostasis by secretion of Cl under β2-adrenergic control with cAMP as second messenger, a process that parallels the adrenergic control of K+ secretion by vestibular dark cells. The current work points to one possible etiology of endolymphatic hydrops in Meniere's disease and may provide a basis for intervention.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3