Secretory modulation of basolateral membrane inwardly rectified K+ channel in guinea pig distal colonic crypts

Author:

Li Yingjun1,Halm Dan R.1

Affiliation:

1. Department of Physiology and Biophysics, Wright State University, Dayton, Ohio 45435

Abstract

Cell-attached recordings revealed K+ channel activity in basolateral membranes of guinea pig distal colonic crypts. Inwardly rectified currents were apparent with a pipette solution containing 140 mM K+. Single-channel conductance (γ) was 9 pS at the resting membrane potential. Another inward rectifier with γ of 19 pS was observed occasionally. At a holding potential of −80 mV, γ was 21 and 41 pS, respectively. Identity as K+ channels was confirmed after patch excision by changing the bath ion composition. From reversal potentials, relative permeability of Na+ over K+ ( P Na/ P K) was 0.02 ± 0.02, with P Rb/ P K = 1.1 and P Cl/ P K < 0.03. Spontaneous open probability ( P o) of the 9-pS inward rectifier (gpKir) was voltage independent in cell-attached patches. Both a low ( P o = 0.09 ± 0.01) and a moderate ( P o = 0.41 ± 0.01) activity mode were observed. Excision moved gpKir to the medium activity mode; P o ofgpKir was independent of bath Ca2+activity and bath acidification. Addition of Cl and K+ secretagogues altered P o ofgpKir. Forskolin or carbachol (10 μM) activated the small-conductance gpKir in quiescent patches and increased P o in low-activity patches. K+ secretagogues, either epinephrine (5 μM) or prostaglandin E2 (100 nM), decreased P o of gpKir in active patches. This gpKir may be involved in electrogenic secretion of Cl and K+ across the colonic epithelium, which requires a large basolateral membrane K+ conductance during maximal Cl secretion and, presumably, a lower K+ conductance during primary electrogenic K+ secretion.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3