NAD+-dependent ADP-ribosyltransferase in renal brush-border membranes

Author:

Kempson S. A.,Curthoys N. P.

Abstract

Oxidized nicotinamide adenine dinucleotide (NAD+) in cytosol may interact with renal brush-border membranes (BBM) and inhibit BBM phosphate transport. The possible mechanism of interaction was investigated in the present study. Incubation of BBM with [adenine-3H]NAD+ led to acid-stable binding of 3H to the BBM, in contrast there was no binding of 14C when [carbonyl-14C]NAD+ was used. The data are consistent with an ADP-ribosylation mechanism involving transfer of ADP-ribose from NAD+ to BBM. This was confirmed by using [adenylate-32P]NAD+ and by the release of bound 32P in the form of 5'-[32P]AMP when the BBM were treated with snake venom phosphodiesterase. After gradient centrifugation of BBM the ADP-ribosyltransferase was recovered at the same density as known BBM enzymes, indicating that ADP-ribosyltransferase is an intrinsic BBM component and not a contaminant. These findings indicate that cytosolic NAD+ may be used for ADP-ribosylation of BBM proteins and that this may be a mechanism for regulating the BBM phosphate transport system.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3