Rho kinases regulate corneal epithelial wound healing

Author:

Yin Jia,Yu Fu-Shin X.

Abstract

We have previously shown that Rho small GTPase is required for modulating both cell migration and proliferation through cytoskeleton reorganization and focal adhesion formation in response to wounding. In the present study, we investigated the role of Rho kinases (ROCKs), major effectors of Rho GTPase, in mediating corneal epithelial wound healing. Both ROCK 1 and 2 were expressed and activated in THCE cells, an SV40-immortalized human corneal epithelial cell (HCEC) line, in response to wounding, lysophosphatidic acid, and heparin-binding EGF-like growth factor (HB-EGF) stimulations. The ROCK inhibitor Y-27632 efficiently antagonized ROCK activities without affecting Rho activation in wounded HCECs. Y-27632 promoted basal and HB-EGF-enhanced scratch wound healing and enhanced cell migration and adhesion to matrices, while retarded HB-EGF induced cell proliferation. E-cadherin- and β-catenin-mediated cell-cell junction and actin cytoskeleton organization were disrupted by Y-27632. Y-27632 impaired the formation and maintenance of tight junction barriers indicated by decreased trans-epithelial resistance and disrupted occludin staining. We conclude that ROCK activities enhance cell proliferation, promote epithelial differentiation, but negatively modulate cell migration and cell adhesion and therefore play a role in regulating corneal epithelial wound healing.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Reference65 articles.

1. Identification of a Putative Target for Rho as the Serine-Threonine Kinase Protein Kinase N

2. Rho-mediated assembly of stress fibers is differentially regulated in corneal fibroblasts and myofibroblasts

3. Anderson SC, Stone C, Tkach L, SundarRaj N. Rho and Rho-kinase (ROCK) signaling in adherens and gap junction assembly in corneal epithelium. Invest Ophthalmol Vis Sci 43: 978–986, 2002.

4. Anderson SC, SundarRaj N. Regulation of a Rho-associated kinase expression during the corneal epithelial cell cycle. Invest Ophthalmol Vis Sci 42: 933–940, 2001.

5. Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, Handa H. An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 36: 614–621, 1995.

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3