Alterations in Ca2+ cycling by lysoplasmenylcholine in adult rabbit ventricular myocytes

Author:

Liu Shi J.1,Kennedy Richard H.1,Creer Michael H.2,McHowat Jane2

Affiliation:

1. Departments of Pharmaceutical Sciences and Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205; and

2. Department of Pathology, St. Louis University Medical School, St. Louis, Missouri 63104

Abstract

We previously reported that lysoplasmenylcholine (LPlasC) altered the action potential (AP) and induced afterdepolarizations in rabbit ventricular myocytes. In this study, we investigated how LPlasC alters excitation-contraction coupling using edge-motion detection, fura-PE3 fluorescent indicator, and perforated and whole cell patch-clamp techniques. LPlasC increased contraction, myofilament Ca2+ sensitivity, systolic and diastolic free Ca2+ levels, and the magnitude of Ca2+ transients concomitant with increases in the maximum rates of shortening and relaxation of contraction and the rising and declining phases of Ca2+ transients. In some cells, LPlasC induced arrhythmias in a pattern consistent with early and delayed aftercontractions. LPlasC also augmented the caffeine-induced Ca2+ transient with a reduction in the decay rate. Furthermore, LPlasC enhanced L-type Ca2+ channel current ( I Ca,L) and outward currents. LPlasC-induced alterations in contraction and I Ca,L were paralleled by its effect on the AP. Thus these results suggest that LPlasC elicits distinct, potent positive inotropic, lusitropic, and arrhythmogenic effects, resulting from increases in Ca2+influx, Ca2+ sensitivity, sarcoplasmic reticular (SR) Ca2+ release and uptake, SR Ca2+ content, and probably reduction in sarcolemmal Na+/Ca2+exchange.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3