Acquired cisplatin resistance in human ovarian A2780 cancer cells correlates with shift in taurine homeostasis and ability to volume regulate

Author:

Sørensen Belinda Halling1,Thorsteinsdottir Unnur Arna1,Lambert Ian Henry1

Affiliation:

1. Department of Biology, Section of Cellular and Developmental Biology, The August Krogh Building, University of Copenhagen, Copenhagen, Denmark

Abstract

Cisplatin resistance is a major challenge in the treatment of cancer and develops through reduced drug accumulation and an increased ability to avoid drug-induced cell damage, cell shrinkage, and hence initiation of apoptosis. Uptake and release of the semiessential amino acid taurine contribute to cell volume homeostasis, and taurine has been reported to have antiapoptotic effects. Here we find that volume-sensitive taurine release in cisplatin-sensitive [wild-type (WT)] human ovarian cancer A2780 cells is reduced in the presence of the phospholipase A2 inhibitor bromenol lactone, the 5-lipoxygenase (5-LO) inhibitor ETH 615–139, and the cysteine leukotriene receptor 1 (CysLT1) antagonist zafirlukast and impaired by the anion channel blocker DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulfonate). Comparing WT and cisplatin-resistant (RES) A2780 cells we also find that evasion of cisplatin-induced cell death in RES A2780 cells correlates with an increased accumulation of taurine, due to an increased taurine uptake and a concomitant impairment of the volume-sensitive taurine release pathway, as well an inability to reduce cell volume after osmotic cell swelling. Downregulation of volume-sensitive taurine release in RES A2780 cells correlates with reduced expression of the leucine-rich repeat-containing protein 8A (LRRC8A). Furthermore, acute (18 h) exposure to cisplatin (5–10 μM) increases taurine release and LRRC8A expression in WT A2780 cells whereas cisplatin has no effect on LRRC8A expression in RES A2780 cells. It is suggested that shift in LRRC8A activity can be used as biomarker for apoptotic progress and acquirement of drug resistance.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3