Cardiomyoblast caveolin expression: effects of simulated diabetes, α-linolenic acid, and cell signaling pathways

Author:

Russell Jake S.1ORCID,Griffith Tia A.1,Peart Jason N.1,Headrick John P.1

Affiliation:

1. School of Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia

Abstract

Caveolins regulate myocardial substrate handling, survival signaling, and stress resistance; however, control of expression is incompletely defined. We test how metabolic features of type 2 diabetes (T2D), and modulation of cell signaling, influence caveolins in H9c2 cardiomyoblasts. Cells were exposed to glucose (25 vs. 5 mM), insulin (100 nM), or palmitate (0.1 mM), individually or combined, and the effects of adenylate cyclase (AC) activation (50 μM forskolin), focal adhesion kinase (FAK) or protein kinase C β2(PKCβ2) inhibition (1 μM FAK inhibitor 14 or CGP-53353, respectively) or the polyunsaturated fatty acid (PUFA) α-linolenic acid (ALA; 10 μM) were tested. Simulated T2D (elevated glucose + insulin + palmitate) depressed caveolin-1 and -3 without modifying caveolin-2. Caveolin-3 repression was primarily palmitate dependent, whereas high glucose (HG) and insulin independently increased caveolin-3 (while reducing expression when combined). Differential control was evident: baseline caveolin-3 was suppressed by FAK/PKCβ2and insensitive to AC activities, with baseline caveolin-1 and -2 suppressed by AC and insensitive to FAK/PKCβ2. Forskolin and ALA selectively preserved caveolin-3 in T2D cells, whereas PKCβ2and FAK inhibition increased caveolin-3 under all conditions. Despite preservation of caveolin-3, ALA did not modify nucleosome content (apoptosis marker) or transcription of proinflammatory mediators in T2D cells. In summary, caveolin-1 and -3 are strongly repressed with simulated T2D, with caveolin-3 particularly sensitive to palmitate; intrinsic PKCβ2and FAK activities depress caveolin-3 in healthy and stressed cells; ALA and AC activation and PKCβ2inhibition preserve caveolin-3 under T2D conditions; and caveolin-3 changes with T2D and ALA appear unrelated to inflammatory signaling or extent of apoptosis.

Funder

Griffith University

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3