TNF-α dilates cerebral arteries via NAD(P)H oxidase-dependent Ca2+ spark activation

Author:

Cheranov Sergey Y.,Jaggar Jonathan H.

Abstract

Expression of TNF-α, a pleiotropic cytokine, is elevated during stroke and cerebral ischemia. TNF-α regulates arterial diameter, although mechanisms mediating this effect are unclear. In the present study, we tested the hypothesis that TNF-α regulates the diameter of resistance-sized (∼150-μm diameter) cerebral arteries by modulating local and global intracellular Ca2+ signals in smooth muscle cells. Laser-scanning confocal imaging revealed that TNF-α increased Ca2+ spark and Ca2+ wave frequency but reduced global intracellular Ca2+ concentration ([Ca2+]i) in smooth muscle cells of intact arteries. TNF-α elevated reactive oxygen species (ROS) in smooth muscle cells of intact arteries, and this increase was prevented by apocynin or diphenyleneiodonium (DPI), both of which are NAD(P)H oxidase blockers, but was unaffected by inhibitors of other ROS-generating enzymes. In voltage-clamped (−40 mV) cells, TNF-α increased the frequency and amplitude of Ca2+ spark-induced, large-conductance, Ca2+-activated K+ (KCa) channel transients ∼1.7- and ∼1.4-fold, respectively. TNF-α-induced transient KCa current activation was reversed by apocynin or by Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), a membrane-permeant antioxidant, and was prevented by intracellular dialysis of catalase. TNF-α induced reversible and similar amplitude dilations in either endothelium-intact or endothelium-denuded pressurized (60 mmHg) cerebral arteries. MnTMPyP, thapsigargin, a sarcoplasmic reticulum Ca2+-ATPase blocker that inhibits Ca2+ sparks, and iberiotoxin, a KCa channel blocker, reduced TNF-α-induced vasodilations to between 15 and 33% of control. In summary, our data indicate that TNF-α activates NAD(P)H oxidase, resulting in an increase in intracellular H2O2 that stimulates Ca2+ sparks and transient KCa currents, leading to a reduction in global [Ca2+]i, and vasodilation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3