Influence of acidosis on AMP deaminase activity in contracting fast-twitch muscle

Author:

Dudley G. A.,Terjung R. L.

Abstract

The rate of AMP deamination to IMP and NH4, by the action of AMP deaminase, is increased in vitro by acidosis and elevations in [AMP] and [ADP]. We evaluated the influence of acidosis on the activity of AMP deaminase in contracting muscle (5 Hz) by relating the time course of IMP and NH4 production to lactate-induced acidosis in low-oxidative, fast-twitch white (FTW) and high-oxidative, fast-twitch red (FTR) muscle of the rat. Cellular acidosis was modified by controlling lactic acid accumulation by regulating muscle blood flow and using trained animals. A significant activation of AMP deaminase occurred in both muscle types, but only at times when the estimated pH was 6.6 and below (lactate content 20 mu mol/g and above). Cellular acidosis, however, is not absolutely essential, since iodoacetic acid-blocked muscle lost 85-90% of its ATP to IMP during contractions. Thus cellular acidosis seems to be an important, but not the sole, factor activating AMP deaminase during contractions. Further, the influence of acidosis is probably different between fiber types, since the estimated free AMP and ADP contents, calculated from the creatine kinase and myokinase reactions, were different in the two fiber types. Most of the activation of AMP deaminase in FTR muscle could be attributed to a substrate effect of the increased free AMP content. In contrast, most of the activation of AMP deaminase in the FTW muscle was due to factors other than a substrate effect. These results suggest that cellular acidosis during intense contraction conditions is a major factor activating AMP deaminase, especially in the low-oxidative FTW muscle fiber type.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3