Affiliation:
1. Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, Indiana 46202
Abstract
A basis for the insulin mimetic effect of sphingomyelinase on glucose transporter isoform GLUT4 translocation remains unclear. Because sphingomyelin serves as a major determinant of plasma membrane cholesterol and a relationship between plasma membrane cholesterol and GLUT4 levels has recently become apparent, we assessed whether GLUT4 translocation induced by sphingomyelinase resulted from changes in membrane cholesterol content. Exposure of 3T3-L1 adipocytes to sphingomyelinase resulted in a time-dependent loss of sphingomyelin from the plasma membrane and a concomitant time-dependent accumulation of plasma membrane GLUT4. Degradation products of sphingomyelin did not mimic this stimulatory action. Plasma membrane cholesterol amount was diminished in cells exposed to sphingomyelinase. Restoration of membrane cholesterol blocked the stimulatory effect of sphingomyelinase. Increasing concentrations of methyl-β-cyclodextrin, which resulted in a dose-dependent reversible decrease in membrane cholesterol, led to a dose-dependent reversible increase in GLUT4 incorporation into the plasma membrane. Although increased plasma membrane GLUT4 content by cholesterol extraction with concentrations of methyl-β-cyclodextrin above 5 mM most likely reflected decreased GLUT4 endocytosis, translocation stimulated by sphingomyelinase or concentrations of methyl-β-cyclodextrin below 2.5 mM occurred without any visible changes in the endocytic retrieval of GLUT4. Furthermore, moderate loss of cholesterol induced by sphingomyelinase or low concentrations of methyl-β-cyclodextrin did not alter membrane integrity or increase the abundance of other plasma membrane proteins such as the GLUT1 glucose transporter or the transferrin receptor. Regulation of GLUT4 translocation by moderate cholesterol loss did not involve known insulin-signaling proteins. These data reveal that sphingomyelinase enhances GLUT4 exocytosis via a novel cholesterol-dependent mechanism.
Publisher
American Physiological Society
Reference58 articles.
1. The effect of digitonin on the stimulation by insulin of glucose uptake by isolated fat cells
2. Alessenko AV.The role of sphingomyelin cycle metabolites in transduction of signals of cell proliferation, differentiation and death.Membr Cell Biol13: 303–320, 2000.
3. Asahi Y, Hayashi H, Wang L, and Ebina Y.Fluoromicroscopic detection of myc-tagged GLUT4 on the cell surface. Co-localization of the translocated GLUT4 with rearranged actin by insulin treatment in CHO cells and L6 myotubes.J Med Invest46: 192–199, 1999.
4. Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells.
5. CAP defines a second signalling pathway required for insulin-stimulated glucose transport
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献