Affiliation:
1. Department of Medicine, University of North Carolina, Chapel Hill27599-7020.
Abstract
Chloride secretion across cystic fibrosis (CF) airway epithelia is effectively regulated by pathways associated with intracellular Ca2+ metabolism, but not by mechanisms dependent on protein kinase A or C. In a search for therapeutically useful agonists, we investigated the effects of extracellular ATP on the Cl- secretory process in human normal and CF nasal epithelial cultures with double-barreled Cl- selective microelectrodes. When applied to the basolateral membrane of normal, but not CF, nasal epithelium, extracellular ATP (10(-4) M) stimulated a small increase in Cl- secretion that was primarily associated with a hyperpolarizing conductance in the basolateral membrane. In contrast, ATP applied to the apical (luminal) membrane of either normal or CF nasal epithelium stimulated a greater increase in Cl- secretion that was associated with activation of an apical membrane Cl- conductance. The increases in Cl- current and apical conductance were greater in CF tissues and attained maximal values similar to normal nasal epithelium. We conclude 1) that basolateral application of ATP indirectly induces Cl- secretion by activating a basolateral (K+) conductance and is an effective secretagogue only in normal nasal epithelium and 2) that luminally applied ATP is an effective Cl- secretagogue that activates the apical membrane Cl- conductance of normal and CF nasal epithelia to an equivalent level.
Publisher
American Physiological Society
Cited by
142 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献