Cyclic nucleotide-dependent regulation of Mn2+ influx, [Ca2+]i, and arterial smooth muscle relaxation

Author:

Chen X. L.1,Rembold C. M.1

Affiliation:

1. Department of Internal Medicine and Physiology, University of VirginiaHealth Sciences Center, Charlottesville 22908.

Abstract

Elevations in cyclic nucleotide levels can decrease myoplasmic [Ca2+] ([Ca2+]i) and thereby induce arterial smooth muscle relaxation. We evaluated whether cyclic nucleotide-induced reductions in [Ca2+]i are caused by 1) decreased Ca2+ influx or 2) increased Ca2+ sequestration or efflux. Swine carotid medial tissues were loaded with fura-2, and Ca2+ influx was estimated from the quenching rate of 360-nm fluorescence after addition of extracellular Mn2+. Histamine stimulation or high KCl depolarization increased Mn2+ influx, [Ca2+]i, and contractile force. The Ca2+ channel blocker diltiazem attenuated histamine- or KCl-induced increases in Mn2+ influx, [Ca2+]i, and force. Addition of forskolin (which increases cAMP) or nitroglycerin (which increases cGMP) attenuated histamine-induced increases in Mn2+ influx, [Ca2+]i, and force. Addition of forskolin or nitroglycerin also relaxed KCl depolarized tissues; however, Mn2+ influx and [Ca2+]i remained high. These results suggest that Mn(2+)-induced quenching of 360-nm fluorescence is an estimate of Ca2+ influx in the intact swine carotid artery. These results also suggest that cyclic nucleotides can relax swine arterial smooth muscle by at least two mechanisms: 1) reduction of [Ca2+]i primarily induced by decreases in Ca2+ influx and 2) uncoupling force from [Ca2+]i without changing Ca2+ influx or [Ca2+]i.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3