Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs

Author:

Rook M. B.1,van Ginneken A. C.1,de Jonge B.1,el Aoumari A.1,Gros D.1,Jongsma H. J.1

Affiliation:

1. Department of Physiology, University of Amsterdam, TheNetherlands.

Abstract

Cultures of neonatal rat heart cells contain predominantly myocytes and fibroblastic cells. Most abundant are groups of synchronously contracting myocytes, which are electrically well coupled through large gap junctions. Cardiac fibroblasts may be electrically coupled to each other and to adjacent myocytes, be it with low intercellular conductances. Nevertheless, synchronously beating myocytes interconnected via a fibroblast were present, demonstrating that nonexcitable cardiac cells are capable of passive impulse conduction. In fibroblast pairs as well as in myocyte-fibroblast cell pairs, no sensitivity to junctional voltage could be detected when transjunctional conductance was > 1-2 nS. However, in pairs coupled by a conductance of < 1 nS, complex voltage-dependent gating was evident; gap junction channel open probability decreased with increasing junctional voltage but a nongated residual conductance remained at all voltages tested. Single gap junction channel conductance between fibroblasts was approximately 21 pS, very similar to an approximately 18-pS channel conductance that was found between myocytes next to the major conductance of 43 pS. Single-channel conductance in heterologous myocyte-fibroblast gap junctions was approximately 32 pS, which matches the theoretical value of 29 pS for gap junction channels composed of a fibroblast connexon and the major myocyte connexon. A site-directed antibody against rat heart gap junction protein connexin43 recognized gap junctions between neonatal cardiomyocytes, as demonstrated by immunocytochemical labeling. In contrast, junctions between fibroblasts showed no labeling, while in myocyte-fibroblast junctions labeling occasionally was present. Our results suggest the existence of two gap junction proteins between neonatal rat cardiocytes, connexin43 and another yet unidentified connexin. An alternative explanation (cell-specific regulation of the conductance of connexin43 channels) is discussed.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 197 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3