Contractile arrest accelerates myosin heavy chain degradation in neonatal rat heart cells

Author:

Samarel A. M.1,Spragia M. L.1,Maloney V.1,Kamal S. A.1,Engelmann G. L.1

Affiliation:

1. Department of Medicine, Loyola University Stritch School of Medicine, Maywood, Illinois 60153.

Abstract

Mechanical forces influence the growth and metabolism of a variety of cells, including cultured neonatal rat ventricular myocytes. To determine whether mechanical activity affected the synthesis and turnover of myosin heavy chain (MHC) in these striated muscle cells, MHC fractional degradative rates were measured in spontaneously beating cells and in arrested myocytes in which contractile activity was prevented by L-channel blockade (with verapamil, nifedipine, nisoldipine, and diltiazem) or K+ depolarization. MHC degradative rates were measured as the difference between rates of MHC synthesis and accumulation and in pulse-chase biosynthetic labeling experiments. Both methods indicated that contractile arrest markedly increased MHC degradation. Contractile arrest produced by L-channel blockade accelerated MHC degradation to a greater extent than K+ depolarization. The signal transduction pathway linking contractile activity to alterations in MHC degradation did not involve protein kinase C (PKC), because MHC degradation was unaffected by activating PKC in arrested cells or inhibiting PKC in spontaneously beating cells. Chloroquine and E-64 did not suppress the accelerated MHC degradation, suggesting that the rate-limiting step in MHC turnover occurred before degradative processing by cellular proteinases. Using a computer simulation, we hypothesize that the rate-limiting step in MHC turnover preceded (or was coincident with) MHC release from thick filaments. Thus mechanical forces may influence MHC half-life by regulating the rate of myosin disassembly.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3