The cellular and molecular basis of in vivo synaptic plasticity in rodents

Author:

Cheyne Juliette E.1,Montgomery Johanna M.1

Affiliation:

1. Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand

Abstract

Plasticity within the neuronal networks of the brain underlies the ability to learn and retain new information. The initial discovery of synaptic plasticity occurred by measuring synaptic strength in vivo, applying external stimulation and observing an increase in synaptic strength termed long-term potentiation (LTP). Many of the molecular pathways involved in LTP and other forms of synaptic plasticity were subsequently uncovered in vitro. Over the last few decades, technological advances in recording and imaging in live animals have seen many of these molecular mechanisms confirmed in vivo, including structural changes both pre- and postsynaptically, changes in synaptic strength, and changes in neuronal excitability. A well-studied aspect of neuronal plasticity is the capacity of the brain to adapt to its environment, gained by comparing the brains of deprived and experienced animals in vivo, and in direct response to sensory stimuli. Multiple in vivo studies have also strongly linked plastic changes to memory by interfering with the expression of plasticity and by manipulating memory engrams. Plasticity in vivo also occurs in the absence of any form of external stimulation, i.e., during spontaneous network activity occurring with brain development. However, there is still much to learn about how plasticity is induced during natural learning and how this is altered in neurological disorders.

Funder

Royal Society of New Zealand | Marsden Fund

Neurological Foundation of New Zealand

Auckland Medical Research Foundation

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3