Polycystin-2 (PC2) is a key determinant of in vitro myogenesis

Author:

Márquez-Nogueras Karla M.1,Vuchkovska Virdjinija2,DiNello Elisabeth1,Osorio-Valencia Sara1,Kuo Ivana Y.1ORCID

Affiliation:

1. Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois

2. Graduate School, Loyola University Chicago, Maywood, Illinois

Abstract

The development of skeletal muscle (myogenesis) is a well-orchestrated process where myoblasts withdraw from the cell cycle and differentiate into myotubes. Signaling by fluxes in intracellular calcium (Ca2+) is known to contribute to myogenesis, and increased mitochondrial biogenesis is required to meet the metabolic demand of mature myotubes. However, gaps remain in the understanding of how intracellular Ca2+ signals can govern myogenesis. Polycystin-2 (PC2 or TRPP1) is a nonselective cation channel permeable to Ca2+. It can interact with intracellular calcium channels to control Ca2+ release and concurrently modulates mitochondrial function and remodeling. Due to these features, we hypothesized that PC2 is a central protein in mediating both the intracellular Ca2+ responses and mitochondrial changes seen in myogenesis. To test this hypothesis, we created CRISPR/Cas9 knockout (KO) C2C12 murine myoblast cell lines. PC2 KO cells were unable to differentiate into myotubes, had impaired spontaneous Ca2+ oscillations, and did not develop depolarization-evoked Ca2+ transients. The autophagic-associated pathway beclin-1 was downregulated in PC2 KO cells, and direct activation of the autophagic pathway resulted in decreased mitochondrial remodeling. Re-expression of full-length PC2, but not a calcium channel dead pathologic mutant, restored the differentiation phenotype and increased the expression of mitochondrial proteins. Our results establish that PC2 is a novel regulator of in vitro myogenesis by integrating PC2-dependent Ca2+ signals and metabolic pathways.

Funder

HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases

HHS | NIH | National Center for Advancing Translational Sciences

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3