Developmental changes in ryanodine- and IP3-sensitive Ca2+ pools in ovine basilar artery

Author:

Nauli S. M.1,Williams J. M.1,Akopov S. E.1,Zhang L.1,Pearce W. J.1

Affiliation:

1. Department of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California 92350

Abstract

To explore the hypothesis that cerebrovascular maturation alters ryanodine- and inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pool sizes, we measured total intracellular Ca2+ with 45Ca and the fractions of intracellular Ca2+ released by IP3 and/or caffeine in furaptra-loaded permeabilized basilar arteries from nonpregnant adult and term fetal (139–141 days) sheep. Ca2+ mass (nmol/mg dry weight) was similar in adult (1.60 ± 0.18) and fetal (1.71 ± 0.16) arteries in the pool sensitive to IP3 alone but was significantly lower for adult (0.11 ± 0.01) than for fetal (1.22 ± 0.11) arteries in the pool sensitive to ryanodine alone. The pool sensitive to both ryanodine and IP3 was also smaller in adult (0.14 ± 0.01) than in fetal (0.85 ± 0.08) arteries. Because the Ca2+ fraction in the ryanodine-IP3 pool was small in both adult (5 ± 1%) and fetal (7 ± 4%) arteries, the IP3 and ryanodine pools appear to be separate in these arteries. However, the pool sensitive to neither IP3 nor ryanodine was 10-fold smaller in adult (0.87 ± 0.10) than in fetal (8.78 ± 0.81) arteries, where it accounted for 72% of total intracellular membrane-bound Ca2+. Thus, during basilar artery maturation, intracellular Ca2+ mass plummets in noncontractile pools, decreases modestly in ryanodine-sensitive pools, and remains constant in IP3-sensitive pools. In addition, age-related increases in IP3 efficacy must involve factors other than IP3 pool size alone.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3