Gap junctions and fluid flow response in MC3T3-E1 cells

Author:

Saunders M. M.1,You J.1,Trosko J. E.2,Yamasaki H.3,Li Z.1,Donahue H. J.1,Jacobs C. R.4

Affiliation:

1. Musculoskeletal Research Laboratory, Department of Orthopedics and Rehabilitation, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033;

2. Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan 48824; and

3. Kwansei Gakuin University, Uegahava, Nishinomiya 662-8501, Japan;

4. Biomechanical Engineering Division, Department of Mechanical Engineering, Stanford University, Stanford, California 94304

Abstract

In the current study, we examined the role of gap junctions in oscillatory fluid flow-induced changes in intracellular Ca2+concentration and prostaglandin release in osteoblastic cells. This work was completed in MC3T3-E1 cells with intact gap junctional communication as well as in MC3T3-E1 cells rendered communication deficient through expression of a dominant-negative connexin. Our results demonstrate that MC3T3-E1 cells with intact gap junctions respond to oscillatory fluid flow with significant increases in prostaglandin E2 (PGE2) release, whereas cells with diminished gap junctional communication do not. Furthermore, we found that cytosolic Ca2+ (Ca[Formula: see text]) response was unaltered by the disruption in gap junctional communication and was not significantly different among the cell lines. Thus our results suggest that gap junctions contribute to the PGE2 but not to the Ca[Formula: see text] response to oscillatory fluid flow. These findings implicate gap junctional intercellular communication (GJIC) in bone cell ensemble responsiveness to oscillatory fluid flow and suggest that gap junctions and GJIC play a pivotal role in mechanotransduction mechanisms in bone.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3