Modeling of transcellular Ca transport in rat duodenum points to coexistence of two mechanisms of apical entry

Author:

Slepchenko Boris M.1,Bronner Felix2

Affiliation:

1. Departments of Physiology and

2. BioStructure and Function, University of Connecticut Health Center, Farmington, Connecticut 06030

Abstract

Employing realistic parameters, we have demonstrated that a relatively simple mathematical model can reproduce key features of steady-state Ca2+ transport with the assumption of two mechanisms of Ca2+ entry: a channel-like flux and a carrier-mediated transport. At low luminal [Ca2+] (1–5 mM), facilitated entry dominates and saturates with K m = 0.4 mM. At luminal [Ca2+] of tens of millimolar, apical permeability is dominated by the channel flux that in turn is regulated by cytosolic Ca2+. The model reproduces the linear relationship between maximum Ca2+ transport rate and intestinal calbindin D9K (CaBP) content. At luminal [Ca2+] > 50 mM, local sensitivity analysis shows transcellular transport to be most sensitive to variations in CaBP. At low luminal [Ca2+], transport becomes sensitive to apical entry regulation. The simulations have been run within the Virtual Cell modeling environment, yielding the time course of external Ca2+ and spatiotemporal distributions of both intracellular Ca2+ and CaBP. Coexistence of two apical entry mechanisms accords with the properties of the duodenal Ca2+ transport protein CaT1 and the epithelial Ca2+ channel ECaC.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3