Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction

Author:

Lyall Vijay1,Alam Rammy I.1,Phan Duy Q.1,Ereso Glenn L.1,Phan Tam-Hao T.1,Malik Shahbaz A.1,Montrose Marshall H.2,Chu Shaoyou2,Heck Gerard L.1,Feldman George M.13,DeSimone John A.1

Affiliation:

1. Department of Physiology, Virginia Commonwealth University, Richmond 23298-0551,

2. Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120

3. McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249; and

Abstract

Taste receptor cells (TRCs) respond to acid stimulation, initiating perception of sour taste. Paradoxically, the pH of weak acidic stimuli correlates poorly with the perception of their sourness. A fundamental issue surrounding sour taste reception is the identity of the sour stimulus. We tested the hypothesis that acids induce sour taste perception by penetrating plasma membranes as H+ ions or as undissociated molecules and decreasing the intracellular pH (pHi) of TRCs. Our data suggest that taste nerve responses to weak acids (acetic acid and CO2) are independent of stimulus pH but strongly correlate with the intracellular acidification of polarized TRCs. Taste nerve responses to CO2 were voltage sensitive and were blocked with MK-417, a specific blocker of carbonic anhydrase. Strong acids (HCl) decrease pHi in a subset of TRCs that contain a pathway for H+ entry. Both the apical membrane and the paracellular shunt pathway restrict H+ entry such that a large decrease in apical pH is translated into a relatively small change in TRC pHi within the physiological range. We conclude that a decrease in TRC pHi is the proximate stimulus in rat sour taste transduction.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3