Heterologous expression of Na+-K+-ATPase in insect cells: intracellular distribution of pump subunits

Author:

Gatto Craig12,McLoud Scott M.1,Kaplan Jack H.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon 97201-3098; and

2. Department of Biological Sciences, Illinois State University, Normal, Illinois 61790-4120

Abstract

The Na+-K+-ATPase is a heterodimeric plasma membrane protein responsible for cellular ionic homeostasis in nearly all animal cells. It has been shown that some insect cells (e.g., High Five cells) have no (or extremely low) Na+-K+-ATPase activity. We expressed sheep kidney Na+-K+-ATPase α- and β-subunits individually and together in High Five cells via the baculovirus expression system. We used quantitative slot-blot analyses to determine that the expressed Na+-K+-ATPase comprises between 0.5% and 2% of the total membrane protein in these cells. Using a five-step sucrose gradient (0.8–2.0 M) to separate the endoplasmic reticulum, Golgi apparatus, and plasma membrane fractions, we observed functional Na+ pump molecules in each membrane pool and characterized their properties. Nearly all of the expressed protein functions normally, similar to that found in purified dog kidney enzyme preparations. Consequently, the measurements described here were not complicated by an abundance of nonfunctional heterologously expressed enzyme. Specifically, ouabain-sensitive ATPase activity, [3H]ouabain binding, and cation dependencies were measured for each fraction. The functional properties of the Na+-K+-ATPase were essentially unaltered after assembly in the endoplasmic reticulum. In addition, we measured ouabain-sensitive 86Rb+ uptake in whole cells as a means to specifically evaluate Na+-K+-ATPase molecules that were properly folded and delivered to the plasma membrane. We could not measure any ouabain-sensitive activities when either the α-subunit or β-subunit were expressed individually. Immunostaining of the separate membrane fractions indicates that the α-subunit, when expressed alone, is degraded early in the protein maturation pathway (i.e., the endoplasmic reticulum) but that the β-subunit is processed normally and delivered to the plasma membrane. Thus it appears that only the α-subunit has an oligomeric requirement for maturation and trafficking to the plasma membrane. Furthermore, assembly of the α-β heterodimer within the endoplasmic reticulum apparently does not require a Na+pump-specific chaperone.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3