Common mechanisms of monoacylglycerol and fatty acid uptake by human intestinal Caco-2 cells

Author:

Ho Shiu-Ying1,Storch Judith1

Affiliation:

1. Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901-8525

Abstract

Free fatty acids (FFA) and sn-2-monoacylglycerol ( sn-2-MG), the two hydrolysis products of dietary triacylglycerol, are absorbed from the lumen into polarized enterocytes that line the small intestine. Intensive studies regarding FFA transport across the brush-border membrane of the enterocyte are available; however, little is known about sn-2-MG transport. We therefore studied the kinetics of sn-2-MG transport, compared with those of long-chain FFA (LCFA), by human intestinal Caco-2 cells. To mimic postprandial luminal and plasma environments, we examined the uptake of taurocholate-mixed lipids and albumin-bound lipids at the apical (AP) and basolateral (BL) surfaces of Caco-2 cells, respectively. The results demonstrate that the uptake of sn-2-monoolein at both the AP and BL membranes appears to be a saturable function of the monomer concentration of sn-2-monoolein. Furthermore, trypsin preincubation inhibits sn-2-monoolein uptake at both AP and BL poles of cells. These results suggest that sn-2-monoolein uptake may be a protein-mediated process. Competition studies also support a protein-mediated mechanism and indicate that LCFA and LCMG may compete through the same membrane protein(s) at the AP surface of Caco-2 cells. The plasma membrane fatty acid-binding protein (FABPpm) is known to be expressed in Caco-2, and here we demonstrate that fatty acid transport protein (FATP) is also expressed. These putative plasma membrane LCFA transporters may be involved in the uptake of sn-2-monoolein into Caco-2 cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Reference51 articles.

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3