Effects of a domain peptide of the ryanodine receptor on Ca2+ release in skinned skeletal muscle fibers

Author:

Lamb Graham D.1,Posterino Giuseppe S.1,Yamamoto Takeshi2,Ikemoto Noriaki2

Affiliation:

1. Department of Zoology, La Trobe University, Bundoora, Victoria 3086, Australia; and

2. Boston Biomedical Research Institute, Watertown, Massachusetts 02472

Abstract

Mutations in the central domain of the skeletal muscle ryanodine receptor (RyR) cause malignant hyperthermia (MH). A synthetic peptide (DP4) in this domain (Leu-2442–Pro-2477) produces enhanced ryanodine binding and sensitized Ca2+ release in isolated sarcoplasmic reticulum, similar to the properties in MH, possibly because the peptide disrupts the normal interdomain interactions that stabilize the closed state of the RyR (Yamamoto T, El-Hayek R, and Ikemoto N. J Biol Chem 275: 11618–11625, 2000). Here, DP4 was applied to mechanically skinned fibers of rat muscle that had the normal excitation-contraction coupling mechanism still functional to determine whether muscle fiber responsiveness was enhanced. DP4 (100 μM) substantially potentiated the Ca2+release and force response to caffeine (8 mM) and to low [Mg2+] (0.2 mM) in every fiber examined, with no significant effect on the properties of the contractile apparatus. DP4 also potentiated the response to submaximal depolarization of the transverse tubular system by ionic substitution. Importantly, DP4 did not significantly alter the size of the twitch response elicited by action potential stimulation. These results support the proposal that DP4 causes an MH-like aberration in RyR function and are consistent with the voltage sensor triggering Ca2+ release by destabilizing the closed state of the RyRs.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3