Expression of Ca2+-activated K+channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract

Author:

Fujita Akikazu12,Takeuchi Tadayoshi12,Saitoh Noriko1,Hanai Jun3,Hata Fumiaki12

Affiliation:

1. Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Science and

2. Department of Molecular Physiology and Biochemistry, Research Institute for Advanced Science and Technology, Osaka Prefecture University, Sakai, Osaka 599-8531; and

3. Department of Pathology and Research, Sakai Municipal Hospital, Sakai, Osaka 590-0064, Japan

Abstract

A role for small-conductance Ca2+-activated K+ (SK) channels on spontaneous motility of the gastrointestinal tract has been suggested. Although four subtypes of SK channels were identified in mammalian tissues, the subtypes of SK channel expressed in the gastrointestinal tract are still unknown. In this study, we investigated the expression and localization of SK channels in the gastrointestinal tract. RT-PCR analysis shows expression of SK3 and SK4 mRNA, but not SK1 or SK2 mRNA, in the rat intestine. SK3 immunoreactivity was detected in the myenteric plexus and muscular layers of the stomach, ileum, and colon. SK3-immunoreactive cells were stained with antibody for c-kit, a marker for the interstitial cells of Cajal (ICC), but not with that for glial fibrillary acidic protein in the ileum and stomach. Immunoelectron microscopic analysis indicates that SK3 channels are localized on processes of ICC that are located close to the myenteric plexus between the longitudinal and circular muscle layers and within the muscular layers. Because ICC have been identified as pacemaker cells and are known to play a major role in generating the regular motility of the gastrointestinal tract, these results suggest that SK3 channels, which are expressed specifically in ICC, play an important role in generating a rhythmic pacemaker current in the gastrointestinal tract.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3