Transmembrane domain length determines intracellular membrane compartment localization of syntaxins 3, 4, and 5

Author:

Watson Robert T.1,Pessin Jeffrey E.1

Affiliation:

1. Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242

Abstract

Insulin recruits glucose transporter 4 (GLUT-4) vesicles from intracellular stores to the plasma membrane in muscle and adipose tissue by specific interactions between the vesicle membrane-soluble N-ethylmaleimide-sensitive factor attachment protein target receptor (SNARE) protein VAMP-2 and the target membrane SNARE protein syntaxin 4. Although GLUT-4 vesicle trafficking has been intensely studied, few have focused on the mechanism by which the SNAREs themselves localize to specific membrane compartments. We therefore set out to identify the molecular determinants for localizing several syntaxin isoforms, including syntaxins 3, 4, and 5, to their respective intracellular compartments (plasma membrane for syntaxins 3 and 4; cis-Golgi for syntaxin 5). Analysis of a series of deletion and chimeric syntaxin constructs revealed that the 17-amino acid transmembrane domain of syntaxin 5 was sufficient to direct the cis-Golgi localization of several heterologous reporter constructs. In contrast, the longer 25-amino acid transmembrane domain of syntaxin 3 was sufficient to localize reporter constructs to the plasma membrane. Furthermore, truncation of the syntaxin 3 transmembrane domain to 17 amino acids resulted in a complete conversion to cis-Golgi compartmentalization that was indistinguishable from syntaxin 5. These data support a model wherein short transmembrane domains (≤17 amino acids) direct the cis-Golgi localization of syntaxins, whereas long transmembrane domains (≥23 amino acids) direct plasma membrane localization.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3