Ca2+ regulation of gap junctional coupling in lens epithelial cells

Author:

Churchill Grant C.1,Lurtz Monica M.1,Louis Charles F.1

Affiliation:

1. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455

Abstract

The quantitative effects of Ca2+signaling on gap junctional coupling in lens epithelial cells have been determined using either the spread of Mn2+ that is imaged by its ability to quench the fluorescence of fura 2 or the spread of the fluorescent dye Alexa Fluor 594. Gap junctional coupling was unaffected by a mechanically stimulated cell-to-cell Ca2+wave. Furthermore, when cytosolic Ca2+ concentration (Ca[Formula: see text]) increased after the addition of the agonist ATP, coupling was unaffected during the period that Ca[Formula: see text] was maximal. However, coupling decreased transiently ∼5–10 min after agonist addition when Ca[Formula: see text] returned to resting levels, indicating that this transient decrease in coupling was unlikely due to a direct action of Ca[Formula: see text] on gap junctions. An increase in Ca[Formula: see text] mediated by the ionophore ionomycin that was sustained for several minutes resulted in a more rapid and sustained decrease in coupling (IC50 ∼300 nM Ca2+, Hill coefficient of 4), indicating that an increase in Ca[Formula: see text]alone could regulate gap junctions. Thus Ca[Formula: see text]increases that occurred during agonist stimulation and cell-to-cell Ca2+ waves were too transient to mediate a sustained uncoupling of lens epithelial cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3