Gastric parietal cell secretory membrane contains PKA- and acid-activated Kir2.1 K+channels

Author:

Malinowska Danuta H.1,Sherry Ann M.1,Tewari Kirti P.1,Cuppoletti John1

Affiliation:

1. Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0576

Abstract

Our objective was to identify and localize a K+channel involved in gastric HCl secretion at the parietal cell secretory membrane and to characterize and compare the functional properties of native and recombinant gastric K+channels. RT-PCR showed that mRNA for Kir2.1 was abundant in rabbit gastric mucosa with lesser amounts of Kir4.1 and Kir7.1, relative to β-actin. Kir2.1 mRNA was localized to parietal cells of rabbit gastric glands by in situ RT-PCR. Resting and stimulated gastric vesicles contained Kir2.1 by Western blot analysis at ∼50 kDa as observed with in vitro translation. Immunoconfocal microscopy showed that Kir2.1 was present in parietal cells, where it colocalized with H+-K+-ATPase and ClC-2 Cl-channels. Function of native K+channels in rabbit resting and stimulated gastric mucosal vesicles was studied by reconstitution into planar lipid bilayers. Native gastric K+channels exhibited a linear current-voltage relationship and a single-channel slope conductance of ∼11 pS in 400 mM K2SO4. Channel open probability (Po) in stimulated vesicles was high, and that of resting vesicles was low. Reduction of extracellular pH plus PKA treatment increased resting channel Poto ∼0.5 as measured in stimulated vesicles. Full-length rabbit Kir2.1 was cloned. When stably expressed in Chinese hamster ovary (CHO) cells, it was activated by reduced extracellular pH and forskolin/IBMX with no effects observed in nontransfected CHO cells. Cation selectivity was K+= Rb+>> Na+= Cs+= Li+= NMDG+. These findings strongly suggest that the Kir2.1 K+channel may be involved in regulated gastric acid secretion at the parietal cell secretory membrane.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3