Role of reactive oxygen species and NAD(P)H oxidase in α1-adrenoceptor signaling in adult rat cardiac myocytes

Author:

Xiao Lei1,Pimentel David R.1,Wang Jing1,Singh Krishna1,Colucci Wilson S.1,Sawyer Douglas B.1

Affiliation:

1. Myocardial Biology Unit, Cardiovascular Division, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, 02118

Abstract

We recently reported that α1-adrenoceptor (α1-AR) stimulation induces hypertrophy via activation of the mitogen/extracellular signal-regulated kinase (MEK) 1/2-extracellular signal-regulated kinase (ERK) 1/2 pathway and generates reactive oxygen species (ROS) in adult rat ventricular myocytes (ARVM). Here we investigate the intracellular source of ROS in ARVM and the mechanism by which ROS activate hypertrophic signaling after α1-AR stimulation. Pretreatment of ARVM with the ROS scavenger Mn(III)terakis(1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP) completely inhibited the α1-AR-stimulated activation of Ras-MEK1/2-ERK1/2. Direct addition of H2O2or the superoxide generator menadione activated ERK1/2, which is also prevented by MnTMPyP pretreatment. We found that ARVM express gp91phox, p22phox, p67phox, and p47phox, four major components of NAD(P)H oxidase, and that α1-AR-stimulated ERK1/2 activation was blocked by four structurally unrelated inhibitors of NAD(P)H oxidase [diphenyleneiodonium, phenylarsine oxide, 4-(2-aminoethyl)benzenesulfonyl fluoride, and cadmium]. Conversely, inhibitors for other potential ROS-producing systems, including mitochondrial electron transport chain, nitric oxide synthase, xanthine oxidase, and cyclooxygenase, had no effect on α1-AR-stimulated ERK1/2 activation. Taken together, our results show that ventricular myocytes express components of an NAD(P)H oxidase that appear to be involved in α1-AR-stimulated hypertrophic signaling via ROS-mediated activation of Ras-MEK1/2-ERK1/2.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3