Abstract
Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multistage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multistage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12- O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol 12-myristate 13-acetate, PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na+,K+-ATPase. This review focuses on palytoxin-stimulated signaling and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated.
Publisher
American Physiological Society
Reference97 articles.
1. Human Collagenase-3 Is Expressed in Malignant Squamous Epithelium of the Skin
2. Differential effects of various skin tumor-promoting agents on prostaglandin E2 release from primary cultures of mouse epidermal cells
3. Albanell J, Codony-Servat J, Rojo F, Del Campo JM, Sauleda S, Anido J, Raspall G, Giralt J, Rosello J, Nicholson RI, Mendelsohn J, Baselga J.Activated extracellular signal-regulated kinases: association with epidermal growth factor receptor/transforming growth factor alpha expression in head and neck squamous carcinoma and inhibition by anti-epidermal growth factor receptor treatments.Cancer Res61: 6500–6510, 2001.
4. Angel P, Karin M.The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation.Biochim Biophys Acta1072: 129–157, 1991.
5. Actin cytoskeleton of rabbit intestinal cells is a target for potent marine phycotoxins
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献