Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells

Author:

Zhang Jianliang,Jin Bilian,Li Liuzhe,Block Edward R.,Patel Jawaharlal M.

Abstract

Persistent inhibition of cytochrome- c oxidase, a terminal enzyme of the mitochondrial electron transport chain, by excessive nitric oxide (NO) derived from inflammation, polluted air, and tobacco smoke contributes to enhanced oxidant production and programmed cell death or apoptosis of lung cells. We sought to determine whether the long-term exposure of pulmonary artery endothelial cells (PAEC) to pathophysiological concentrations of NO causes persistent inhibition of complex IV through redox modification of its key cysteine residues located in a putative NO-sensitive motif. Prolonged exposure of porcine PAEC to 1 mM 2,2′-(hydroxynitrosohydrazino)-bis-ethanamine (NOC-18; slow-releasing NO donor, equivalent to 1–5 μM NO) resulted in a gradual, persistent inhibition of complex IV concomitant with a reduction in ratios of mitochondrial GSH and GSSG. Overexpression of thioredoxin in mitochondria of PAEC attenuated NO-induced loss of complex IV activities, suggesting redox regulation of complex IV activity. Sequence analysis of complex IV subunits revealed a novel putative NO-sensitive motif in subunit II (S2). There are only two cysteine residues in porcine complex IV S2, located in the putative motif. Immunoprecipitation and Western blot analysis and “biotin switch” assay demonstrated that exposure of PAEC to 1 mM NOC-18 increased S-nitrosylation of complex IV S2 by 200%. Site-directed mutagenesis of these two cysteines of complex IV S2 attenuated NO-increased nitrosylation of complex IV S2. These results demonstrate for the first time that NO nitrosylates active site cysteines of complex IV, which is associated with persistent inhibition of complex IV. NO inhibition of complex IV via nitrosylation of NO-sensitive cysteine residues can be a novel upstream event in NO-complex IV signaling for NO toxicity in lung endothelial cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3