Chondrocyte-specific response to stiffness-mediated primary cilia formation and centriole positioning

Author:

Williantarra Ivanna1,Leung Sophia1,Choi Yu Suk2,Chhana Ashika1,McGlashan Sue R.1ORCID

Affiliation:

1. Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

2. School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia

Abstract

Mechanical stress and the stiffness of the extracellular matrix are key drivers of tissue development and homeostasis. Aberrant mechanosensation is associated with a wide range of pathologies, including osteoarthritis. Matrix (or substrate) stiffness plays a major role in cell spreading, adhesion, proliferation, and differentiation. However, how specific cells sense substrate stiffness still remains unclear. The primary cilium is an essential cellular organelle that senses and integrates mechanical and chemical signals from the extracellular environment. We hypothesized that the primary cilium dynamically alters its length and position to fine-tune cell mechanosignaling based on substrate stiffness alone. We used a hydrogel system of varying substrate stiffness to examine the role of stiffness on cilia frequency, length, and centriole position as well as cell and nuclei area over time. Contrary to other cell types, we show that chondrocyte primary cilia shorten on softer substrates, demonstrating tissue-specific mechanosensing that is aligned with the tissue stiffness the cells originate from. We further show that stiffness determines centriole positioning to either the basal or apical membrane during attachment and spreading, with centrioles positioned toward the basal membrane on stiffer substrates. These phenomena are mediated by force generation actin-myosin stress fibers in a time-dependent manner. Finally, we show on stiff substrates that primary cilia are involved in tension-mediated cell spreading. We propose that substrate stiffness plays a role in cilia positioning, regulating cellular responses to external forces, and maybe a key driver of mechanosignaling-associated diseases.

Funder

Royal Society of New Zealand | Marsden Fund

University of Auckland

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3