Troponin C isoform composition determines differences in Sr2+-activation characteristics between rat diaphragm fibers

Author:

O'Connell Brett,Stephenson D. George,Blazev Ronnie,Stephenson Gabriela M. M.

Abstract

Single fibers of rat diaphragm containing different naturally occurring combinations of myofibrillar protein isoforms were used to evaluate the contribution of troponin C (TnC) isoforms to fiber type-related differences with respect to sensitivity to Sr2+of the contractile system. Mechanically skinned fibers were studied for their isometric force vs. Sr2+concentration ([Sr2+]) relationships and then analyzed electrophoretically for myofibrillar protein isoform composition. Our data demonstrate that fiber-type differences in Sr2+dependence of contractile activation processes are primarily determined by the TnC isoform composition, with the slow isoform conferring on average a sevenfold greater sensitivity to Sr2+than the fast isoform. Moreover, the ratio of TnC isoforms determined functionally from the force-pSr (−log10[Sr2+]) curves is tightly ( r2= 0.97) positively correlated with that estimated electrophoretically. Together, these results validate the use of Sr2+activation characteristics to distinguish fibers containing different proportions of fast and slow TnC isoforms and to study the mechanisms by which divalent cations activate the contractile apparatus. We also found that the functionally and electrophoretically determined ratios of TnC isoforms present in a fiber display similar sigmoidal relationships with the ratio of myosin heavy chain (MHC) isoform types expressed. These relationships 1) offer further insight in the functional and molecular expression of TnC in relation to the molecular expression of MHC isoform types and 2) may provide the basis for predicting sensitivity to Sr2+, TnC, and MHC isoforms in pure and hybrid skeletal muscle fibers.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3