Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase

Author:

Liu Lijun1,Mohammadi Kamiar1,Aynafshar Behrouz1,Wang Haojie1,Li Daxiang1,Liu Jiang1,Ivanov Alexander V.1,Xie Zijian1,Askari Amir1

Affiliation:

1. Departments of Pharmacology and Medicine, Medical College of Ohio, Toledo, Ohio 43614

Abstract

Ouabain binding to Na+/K+-ATPase activates Src/epidermal growth factor receptor (EGFR) to initiate multiple signal pathways that regulate growth. In cardiac myocytes and the intact heart, the early ouabain-induced pathways that cause rapid activations of ERK1/2 also regulate intracellular Ca2+ concentration ([Ca2+]i) and contractility. The goal of this study was to explore the role of caveolae in these early signaling events. Subunits of Na+/K+-ATPase were detected by immunoblot analysis in caveolae isolated from cardiac myocytes, cardiac ventricles, kidney cell lines, and kidney outer medulla by established detergent-free procedures. Isolated rat cardiac caveolae contained Src, EGFR, ERK1/2, and 20–30% of cellular contents of α1- and α2-isoforms of Na+/K+-ATPase, along with nearly all of cellular caveolin-3. Immunofluorescence microscopy of adult cardiac myocytes showed the presence of caveolin-3 and α-isoforms in peripheral sarcolemma and T tubules and suggested their partial colocalization. Exposure of contracting isolated rat hearts to a positive inotropic dose of ouabain and analysis of isolated cardiac caveolae showed that ouabain caused 1) no change in total caveolar ERK1/2, but a two- to threefold increase in caveolar phosphorylated/activated ERK1/2; 2) no change in caveolar α1-isoform and caveolin-3; and 3) 50–60% increases in caveolar Src and α2-isoform. These findings, in conjunction with previous observations, show that components of the pathways that link Na+/K+-ATPase to ERK1/2 and [Ca2+]i are organized within cardiac caveolae microdomains. They also suggest that ouabain-induced recruitments of Src and α2-isoform to caveolae are involved in the manifestation of the positive inotropic effect of ouabain.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3