Functional and structural characterization of a novel malignant hyperthermia-susceptible variant of DHPR-β1a subunit (CACNB1)

Author:

Perez Claudio F.1,Eltit Jose M.2,Lopez Jose R.3,Bodnár Dóra1,Dulhunty Angela F.4,Aditya Shouvik4,Casarotto Marco G.4

Affiliation:

1. Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts

2. Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia

3. Department of Molecular Biosciences, University of California, Davis, California

4. John Curtin School of Medical Research, Australian National University, Canberra, Australia

Abstract

Malignant hyperthermia (MH) susceptibility has been recently linked to a novel variant of β1a subunit of the dihydropyridine receptor (DHPR), a channel essential for Ca2+ regulation in skeletal muscle. Here we evaluate the effect of the mutant variant V156A on the structure/function of DHPR β1a subunit and assess its role on Ca2+ metabolism of cultured myotubes. Using differential scanning fluorimetry, we show that mutation V156A causes a significant reduction in thermal stability of the Src homology 3/guanylate kinase core domain of β1a subunit. Expression of the variant subunit in β1-null mouse myotubes resulted in increased sensitivity to caffeine stimulation. Whole cell patch-clamp analysis of β1a-V156A-expressing myotubes revealed a −2 mV shift in voltage dependence of channel activation, but no changes in Ca2+ conductance, current kinetics, or sarcoplasmic reticulum Ca2+ load were observed. Measurement of resting free Ca2+ and Na+ concentrations shows that both cations were significantly elevated in β1a-V156A-expressing myotubes and that these changes were linked to increased rates of plasmalemmal Ca2+ entry through Na+/Ca2+ exchanger and/or transient receptor potential canonical channels. Overall, our data show that mutant variant V156A results in instability of protein subdomains of β1a subunit leading to a phenotype of Ca2+ dysregulation that partly resembles that of other MH-linked mutations of DHPR α1S subunit. These data prove that homozygous expression of variant β1a-V156A has the potential to be a pathological variant, although it may require other gene defects to cause a full MH phenotype.

Funder

HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)

Australian National Health and Medical Research Council

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3