The mechanism of histamine secretion from gastric enterochromaffin-like cells

Author:

Prinz Christian1,Zanner Robert1,Gerhard Markus1,Mahr Sabine1,Neumayer Nina1,Höhne-Zell Barbara2,Gratzl Manfred2

Affiliation:

1. Departments of Medicine II and

2. Anatomy, Technical University of Munich, D-81675 Munich, Germany

Abstract

Enterochromaffin-like (ECL) cells play a pivotal role in the peripheral regulation of gastric acid secretion as they respond to the functionally important gastrointestinal hormones gastrin and somatostatin and neural mediators such as pituitary adenylate cyclase-activating peptide and galanin. Gastrin is the key stimulus of histamine release from ECL cells in vivo and in vitro. Voltage-gated K+ and Ca2+ channels have been detected on isolated ECL cells. Exocytosis of histamine following gastrin stimulation and Ca2+ entry across the plasma membrane is catalyzed by synaptobrevin and synaptosomal-associated protein of 25 kDa, both characterized as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein. Histamine release occurs from different cellular pools: preexisting vacuolar histamine immediately released by Ca2+ entry or newly synthesized histamine following induction of histidine decarboxylase (HDC) by gastrin stimulation. Histamine is synthesized by cytoplasmic HDC and accumulated in secretory vesicles by proton-histamine countertransport via the vesicular monoamine transporter subtype 2 (VMAT-2). The promoter region of HDC contains Ca2+-, cAMP-, and protein kinase C-responsive elements. The gene promoter for VMAT-2, however, lacks TATA boxes but contains regulatory elements for the hormones glucagon and somatostatin. Histamine secretion from ECL cells is thereby under a complex regulation of hormonal signals and can be targeted at several steps during the process of exocytosis.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microbial-Dependent Recruitment of Immature Myeloid Cells Promotes Intestinal Regeneration;Cellular and Molecular Gastroenterology and Hepatology;2024

2. Evaluation of Four Multispecies Probiotic Cocktails in a Human Colonic Fermentation Model;Probiotics and Antimicrobial Proteins;2023-09-19

3. Enterochromaffin-Like Cell and Associated Pathology;Interpretation of Endoscopic Biopsy - Gastritis, Gastropathies and Beyond;2021-12-04

4. Measurement from ex vivotissues;Electrochemistry for Bioanalysis;2020

5. Gastric Peptides—Gastrin and Somatostatin;Comprehensive Physiology;2019-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3