Role of microtubules in the regulation of metabolism in isolated cerebral microvessels

Author:

Lloyd Pamela G.1,Hardin Christopher D.1

Affiliation:

1. Department of Physiology, University of Missouri-Columbia, Columbia, Missouri 65212

Abstract

We used13C-labeled substrates and nuclear magnetic resonance spectroscopy to examine carbohydrate metabolism in vascular smooth muscle of freshly isolated pig cerebral microvessels (PCMV). PCMV utilized [2-13C]glucose mainly for glycolysis, producing [2-13C]lactate. Simultaneously, PCMV utilized the glycolytic intermediate [1-13C]fructose 1,6-bisphosphate (FBP) mainly for gluconeogenesis, producing [1-13C]glucose with only minor [3-13C]lactate production. The dissimilarity in metabolism of [2-13C]FBP derived from [2-13C]glucose breakdown and metabolism of exogenous [1-13C]FBP demonstrates that carbohydrate metabolism is compartmented in PCMV. Because glycolytic enzymes interact with microtubules, we disrupted microtubules with vinblastine. Vinblastine treatment significantly decreased [2-13C]lactate peak intensity (87.8 ± 3.7% of control). The microtubule-stabilizing agent taxol also reduced [2-13C]lactate peak intensity (90.0 ± 2.4% of control). Treatment with both agents further decreased [2-13C]lactate production (73.3 ± 4.0% of control). Neither vinblastine, taxol, or the combined drugs affected [1-13C]glucose peak intensity (gluconeogenesis) or disrupted the compartmentation of carbohydrate metabolism. The similar effects of taxol and vinblastine, drugs that have opposite effects on microtubule assembly, suggest that they produce their effects on glycolytic rate by competing with glycolytic enzymes for binding, not by affecting the overall assembly state of the microtubule network. Glycolysis, but not gluconeogenesis, may be regulated in part by glycolytic enzyme-microtubule interactions.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MAPping tubulin mutations;Frontiers in Cell and Developmental Biology;2023-02-15

2. Compartmentation of GAPDH;GAPDH: Biological Properties and Diversity;2012-06-14

3. Fueled by microtubules: Does tubulin dimer/polymer partitioning regulate intracellular metabolism?;Cytoskeleton;2012-03

4. Soluble tubulin complexes, γ-tubulin, and their changing distribution in the zebrafish (Danio rerio) ovary, oocyte and embryo;Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology;2007-05

5. Identification and isolation of Dictyostelium microtubule-associated protein interactors by tandem affinity purification;European Journal of Cell Biology;2006-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3